a2 United States Patent
Holla P K et al.

US009059992B2

(10) Patent No.: US 9,059,992 B2

(54) DISTRIBUTED MOBILE ENTERPRISE
APPLICATION PLATFORM

(71) Applicants: Ullas Holla P K, Bangalore (IN);
Ashwani Kumar, Bangalore (IN);
Pradeep Kumar Warrier, Bangalore
(IN)

(72) Inventors: Ullas Holla P K, Bangalore (IN);
Ashwani Kumar, Bangalore (IN);
Pradeep Kumar Warrier, Bangalore
(IN)

(73) Assignee: SAP SE, Walldorf (DE)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 305 days.

(21) Appl. No.: 13/717,647
(22) Filed: Dec. 17, 2012

(65) Prior Publication Data
US 2014/0172955 Al Jun. 19, 2014

(51) Int.CL
HO4L 29/08 (2006.01)
GOGF 9/445 (2006.01)
GOGF 9/50 (2006.01)
(52) US.CL
CPC oo HO4L 67/10 (2013.01); HO4L 67/34
(2013.01); GOGF 8/60 (2013.01); GOGF 9/50

(2013.01)

PORTABLE DEVICE D1

(45) Date of Patent: Jun. 16, 2015
(58) Field of Classification Search
CPC HO4L 67/1002; HO4L 67/1036; HO4L
67/1027; HO4L 67/1034; HO4L 67/1038
USPC ..c.ocevven. 709/203, 217, 218, 219, 226, 229
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2009/0307706 Al* 12/2009 Jostmeyer etal. 718/104
2010/0299451 Al* 112010 Yigangetal. 709/241
2011/0078318 Al* 3/2011 Desaietal. 709/228
2012/0149996 Al* 6/2012 Stivoric etal. 600/301
2012/0158824 Al* 6/2012 Parkccooovvviiiiin 709/203

* cited by examiner
Primary Examiner — Liangche A Wang

(57) ABSTRACT

Various embodiments of systems and methods for distributed
mobile enterprise application platform (MEAP) are described
herein. In one aspect, the method includes receiving a request
to be executed from a mobile device. Based upon the request,
one or more middleware components capable of executing
the request are determined from one or more remotely located
servers. A middleware component from the one or more
middleware components is selected for executing the request.
The request is sent to the selected middleware component for
execution. Based upon the execution, an output is received
from the selected middleware component. In one embodi-
ment, the output is stored in a backend system or sent to a
portable device from which the request is received. In another
embodiment, the output is sent to another middleware com-
ponent for further execution.

17 Claims, 8 Drawing Sheets

SERVER 1
C1 C2
D5T1
D6T1

D6T2

SERVER 2

C2 C4

Y

o
® DE |_P EFEEOA(':I'E)SRS 200 [
o

PORTABLE DEVICE DN

SERVER 3

C1 C3
D4T1

U.S. Patent Jun. 16, 2015 Sheet 1 of 8 US 9,059,992 B2

/1 00
130

¢——p BACKEND SYSTEM 140

FIG. 1

DISTRIBUTED MEAP 110

[=

PORTABLE DEVICE
2

U.S. Patent Jun. 16, 2015 Sheet 2 of 8 US 9,059,992 B2

(=
N

DISTRIBUTED MEAP 110
p-| PROCESS DELEGATOR
0

FIG. 2

¢

CE 120

PORTABLE DEVI

U.S. Patent Jun. 16, 2015 Sheet 3 of 8 US 9,059,992 B2

130

SERVER 3

C4

SERVER 2

C2
C2

SERVER 1

FIG. 3

S ~—
-—
T O
o
<L
L
=
@)
L
|_
D
1]
1
|_
9 ~
o ©)

US 9,059,992 B2

Sheet 4 of 8

Jun. 16, 2015

U.S. Patent

L1vd

%0

10

€ d3NJ3S

48]

[48)

¢ J3INAJ3S

A

¥ 'Old

Nd 32IA3d 319VLd0d

Zl9d

L19a

116d

[48)

1O

L 43AH3S

A 4

002 ¥O1vO313d
SS300dd

Ld 30IA3A 319Y1LH0d

US 9,059,992 B2

Sheet 5 of 8

Jun. 16, 2015

U.S. Patent

T 301A3Q F19V1H0d

S 'Old

vl
WILSAS ANINOVY

€0

6]
<
¢lia 1O
[49)
¢ ¥3AY3S

»1 00z ¥OLvo313a

S5300dd

€0
<
€Lid
[40] >
[%0]
<
1O
L1Ld
10
€ ¥3INYIS

US 9,059,992 B2

Sheet 6 of 8

Jun. 16, 2015

U.S. Patent

9 'OId

NOILNO3X3 FHL NOdN a3svd
1ININOJINOD FAVMITAAIN d3103713S
JHL INOY4 LNdLNO NV IAIFOFH

mom.\

NOILNO3IX3 ¥OA
LNINOJINOD FHVYMITAAIN d3103713S
JHL Ol 1S3IN03Y IHL AN3S

voo\

1S3N03Y IHL ONILNOIX3
HOd4 SININOdNOD FHvMITAdIN
JHOW JO INO IHL INOHS
LININOJINOD FHVYMITAAIN ¥V LO313S

moo\

1S3N03Y IHL ONILND3IX3 40
3719VdVO SININOJNOD FdVYMITAdIN
JHOW JO INO INING31L3d

Noou\

a3aLnd3ax3
39 OL1 1S3aND3Y V IAIFO3

_\ow.\

US 9,059,992 B2

Sheet 7 of 8

Jun. 16, 2015

U.S. Patent

L'9ld
SININOLINOD FHVYMITAdIN S1S3IN03Y
40 ALIMVYENId 3HL 40 INO 1037138 40 439NN LSVY31 IHL ONIAVH
ATNOANVY LININOdNOD FHVMITAAIN V¥V LO3FT3S
mom-\ vom-\
S3A ON

¢d31No3x3 34
Ol S1S3N03Y 40
H39NNN LSVY3IT ONIAVH SININOJINOD
HVYMITAdIN 40 ALIMYENTA Y
Jd3HL SI

c0L

SININOdNOD
IHUYMITAAIN THOW O INO NO dILNDIXI
39 OL S1SINOIY 40 ¥IFANN V INIANILIA

/

104

US 9,059,992 B2

Sheet 8 of 8

Jun. 16, 2015

U.S. Patent

A
A

S

098
304N0S

8 '9ld
Y3av3Y VIAIn 30IA3A LNdNI 301A3A LNdLNO -
93 ond
0z8 GEg — —
518 500
» 3OV4HILNI HOLYDINNNOD
304N0S Y1VAa SMHOMLIN NV ¥0sS3004d

vivd

£

e

008

053 MyomLaN —

US 9,059,992 B2

1
DISTRIBUTED MOBILE ENTERPRISE
APPLICATION PLATFORM

BACKGROUND

A mobile enterprise application platform (MEAP) pro-
vides a middleware for linking enterprise applications or
databases to mobile applications. A MEAP supports a limited
number of mobile devices without degrading performance.
For supporting more mobile devices new MEAPs are
required to be installed. Installing a new MEAP requires
effort and time because components of existing MEAP are
required to be copied to the new MEAP. Additionally, if the
performance of the MEAP degrades, the MEAP needs to be
scaled-up, e.g., by adding or upgrading physical resources
such as a memory, CPU, etc. However, the addition or up
gradation of physical resources requires shut down of the
MEAP. Therefore, there is potential loss of operational or
productive time. Further, the MEAP may also need to be shut
down for software upgrades, which again leads to potential
loss of operational or productive time.

BRIEF DESCRIPTION OF THE DRAWINGS

The claims set forth the embodiments with particularity.
The embodiments are illustrated by way of examples and not
by way of limitation in the figures of the accompanying
drawings in which like references indicate similar elements.
The embodiments, together with its advantages, may be best
understood from the following detailed description taken in
conjunction with the accompanying drawings.

FIG. 1 is a block diagram of a system including a distrib-
uted mobile enterprise application platform (MEAP) for pro-
cessing requests from a portable device, according to an
embodiment.

FIG. 2 is a block diagram of the distributed MEAP includ-
ing a process delegator communicatively coupled to the por-
table device, according to an embodiment.

FIG. 3 illustrates middleware components on the distrib-
uted MEAP and various servers registered with the distrib-
uted MEAP, according to an embodiment.

FIG. 4 is a block diagram illustrating the process delegator
executing requests from various portable devices on the serv-
ers registered with the distributed MEAP, according to an
embodiment.

FIG. 5 is a flow diagram illustrating an execution of a
request by the process delegator, according to an embodi-
ment.

FIG. 6 is a flow chart illustrating the steps to execute a
request by distributed MEAP, according to an embodiment.

FIG. 7 is a flow chart illustrating the steps to select a
middleware component for executing the request, according
to an embodiment.

FIG. 8 is a block diagram of an exemplary computer sys-
tem, according to an embodiment.

DETAILED DESCRIPTION

Embodiments of techniques for distributed mobile enter-
prise application platform (MEAP) are described herein. In
the following description, numerous specific details are set
forth to provide a thorough understanding of the embodi-
ments. One skilled in the relevant art will recognize, however,
that the embodiments can be practiced without one or more of
the specific details, or with other methods, components, mate-
rials, etc. In other instances, well-known structures, materi-
als, or operations are not shown or described in detail.

10

15

20

25

30

35

40

45

50

55

60

65

2

Reference throughout this specification to “one embodi-
ment”, “this embodiment” and similar phrases, means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one of
the one or more embodiments. Thus, the appearances of these
phrases in various places throughout this specification are not
necessarily all referring to the same embodiment. Further-
more, the particular features, structures, or characteristics
may be combined in any suitable manner in one or more
embodiments.

Distributed mobile enterprise application platform
(MEAP) is a middleware which links enterprise applications
or databases to mobile applications. Components of the dis-
tributed MEAP middleware are used for executing requests
from various mobile devices. A middleware component may
be a software application capable of performing a task includ-
ing at least one of processing data, storing data, forwarding
data, assigning data, and sending confirmation. In one
embodiment, a middleware component, can be a sender
which sends data or a message to other component. In one
embodiment, the middleware component can be a target
which receives data or messages. In one instance the middle-
ware component can act like the sender and at other instance
the same middleware component can act like the target. In one
embodiment, the middleware component may be a ‘state
machine’ component. In the below description, the middle-
ware component may be simply referred as a component.

Target is the middleware component which processes or
executes data passed to it. In one embodiment, executing data
implies transforming data. In another embodiment, executing
data implies forwarding data to some other middleware com-
ponent. In one embodiment, the target can be a software
application or an enterprise system.

Sender is the middleware component which sends data to
be executed by some other middleware component. The
sender delegates or assigns data to some other middleware
components. For example, a load balancer or a process del-
egator may be the sender which sends data to the target for
executing.

FIG. 1 illustrates one embodiment of a system 100 includ-
ing a distributed mobile enterprise application platform
(MEAP) 110 for executing a request received from a portable
device 120. The portable device 120 is registered with the
distributed MEAP 110. The distributed MEAP 110 identifies
the request and selects a middleware component for execut-
ing the request. For example, the distributed MEAP 110 may
select a middleware component C1 to execute the request.
The middleware component may be simply referred as a
component. The component C1 may be selected from various
components C1-CN. The components C1-CN may be avail-
able on one or more remotely located servers that are acces-
sible over a network. This configuration of remote location of
servers and their accessibility over the network can be
referred as a cloud 130. In one embodiment, the component
C1 may be a part of the distributed MEAP 110 itself. The
distributed MEAP 110 sends the request to the selected com-
ponent C1. The component C1 executes the request. In one
embodiment, execution comprises forwarding the request to
some other component. In one embodiment, execution com-
prises processing data based upon the request to generate an
output. The generated output is sent to the distributed MEAP
110. In one embodiment, the output comprises a processed
data or a confirmation message. The distributed MEAP 110
stores the output in a backend system 140 or sends the output
to other component for further execution. In one embodiment,
the distributed MEAP 110 sends the output to the portable
device 120.

US 9,059,992 B2

3

The portable device 120 can be any mobile computing
device such as a smart phone. The portable device 120 is
registered with the distributed MEAP 110. Using the portable
device 120, a user can send the request to be executed by the
distributed MEAP 110. The request may be for transforming
data, storing data, filtering data, forwarding data, etc. In one
embodiment, the request may comprise a sequence of tasks
(tasks queue) to be executed in order. For example, the request
may comprise tasks namely ‘staging,” ‘validation,” and ‘dis-
tribution’ which is to be executed in sequence. The ‘staging’
transforms data and produces clean, correct, and useful data.
The ‘validation’ ensures that a program operates on the clean,
correct, and useful data and the ‘distribution’ is meant for
distributing or loading the validated data into data ware-
houses, data marts, or any data stores.

Referring to FIG. 2, the request is received by the distrib-
uted MEAP 110. In one embodiment, the request is received
by a process delegator 200 included within the distributed
MEAP 110. In one embodiment, the process delegator 200
may be external to the distributed MEAP 110. Once the
request is received by the process delegator 200, the process
delegator 200 determines or selects the component to execute
the request. In one embodiment, the process delegator 200 is
a state machine component which selects the component to
execute the request. In one embodiment, the process delega-
tor 200 selects the component based upon the request or
context of the request. In one embodiment, the context
implies various fields within the request format. In one
embodiment, the context implies a type of the task the request
performs. For example, if the request is for ‘filtering data’
then the process delegator 200 selects a ‘filtering component.”

The process delegator 200 selects the component from
various available components capable of executing the
request. The components may be available within the distrib-
uted MEAP 110 or on the cloud 130. For example, one or
more ‘filtering components’ may be available within the dis-
tributed MEAP 110 or on the cloud 130. FIG. 3 illustrates
various servers, e.g., server l-server 3, on the cloud 130
which are registered with the distributed MEAP 110. The
servers, e.g., server 1-server 3, are remotely located servers.
The process delegator 200 looks for the available compo-
nents, e.g., various filtering component C1, within the distrib-
uted MEAP 110 and on the servers 1-3. As shown, the filtering
component C1 is available within distributed MEAP 110 and
on the server 1 and server 3. Therefore, the process delegator
200 selects one of the filtering component C1 from various
filtering components C1 available on the distributed MEAP
110, server 1, and server 3.

In one embodiment, the process delegator 200 selects the
component C1 based upon the ‘availability’ or ‘workload’ of
the component C1. In one embodiment, the component hav-
ing the least or the lowest workload is selected. For example,
if the workload of the component C1 of server 3 is less than
the workload of the component C1 of server 1 and the work-
load of the component C1 of distributed MEAP 110 then the
component C1 ofthe server 3 is selected. In one embodiment,
the component having less than a threshold or a predefined
workload is selected. In one embodiment, if a plurality of
components C1 has the lowest workload, then one of the
plurality of components is selected randomly to execute the
request, in one embodiment, if all the available components
C1 are over loaded and not available, then the distributed
MEAP 110 can create the component C1 on any of the reg-
istered servers. In one embodiment, the distributed MEAP
110 selects the server which is least busy and then creates the
component C1 on that server. In one embodiment, the com-
ponent C1 is created by executing a predefined code of the

15

25

40

45

55

4

component C1 onthe selected server. Typically, an instance of
the component C1 is created on the selected server.

In one embodiment, the request is executed on one or more
specific servers. The process delegator 200 determines a cli-
ent sending the request. Once the client is determined, the
process delegator 200 sends the request to the component
existing on the server registered for the client. For example, if
the client has registered server 1 and server 2, then the
requests from the client would be executed by the compo-
nents on the distributed MEAP 110, server 1, and server 2. In
one embodiment, executing requests on specific servers
ensure security or confidentiality of data. In one embodiment,
the distributed MEAP 110 creates the component C1 on the
server registered by the client for executing request from that
client.

The created or the selected component C1 executes the
request. In one embodiment, executing the request implies
transforming data to generate the output. In another embodi-
ment, executing the request implies forwarding the request to
some other component. In one embodiment, the component
C1 sends the output or confirmation to the distributed MEAP
110. In one embodiment, the component C1 is termed ‘target’
as it processes (e.g., filters) data passed to it. The generated
output (e.g., filtered data) is returned to the distributed MEAP
110. The distributed MEAP 110 stores the output in the data
store such as the backend system 140. The backend system
140 may be any enterprise system e.g., an enterprise resource
planning (ERP), a customer relationship management
(CRM), a human capital management (HCM), etc.

In one embodiment, the component C1 sends a confirma-
tion message that the request is executed to the process del-
egator 200. In one embodiment, the component C1 sends the
output (filtered data) to other component for execution. Atthe
instance of sending the output, the component C1 may be
termed as ‘sender’ because it sends data to be executed by
other component.

FIG. 4 illustrates the process delegator 200 receiving
requests from various portable devices D1-DN. The requests
may be queue-requests which comprise tasks required to be
executed in a particular sequence or order. For example, there
may be a request from the device D1 to execute tasks T1-T3
in an order. The output of task T1 is provided as input to task
T2. and the output of task T2 is provided as input to task T3.
Therefore, D1T1—-D1T2—=D17T3 is to be executed. Suppose,
task T1 is to be executed by the component C1, task T2 is to
be executed by the component C2, and the task T3 is to be
executed by the component C3.

To execute the task T1 from the device D1, the process
delegator 200 determines the least busy component C1 avail-
able on cloud 130 and the distributed MEAP 110. As shown,
the component C1 of server 3 is least busy (only one task T1
is running on it from device D4), therefore, the process del-
egator 200 sends D1T1 to the component C1 of server 3. In
one embodiment, more than one component C1 might be
running on server 3. The D1T1 is executed on the component
C1 of server 3 to generate the output O1.

In one embodiment, while D1T1 is being executed on
server 3, the process delegator 200 receives the request from
the device D2 to execute tasks T1-T3 in order. At that time,
suppose the component C1 of server 1 becomes free and
completes executing previous two tasks T1 from the devices
D5 and D6. The process delegator 200 selects the component
C1 of server 1 to execute D2T1. Therefore, the process del-
egator 200 selects the best possible option to efficiently
execute the task or request at any given time.

Referring to FIG. 5, the output O1 generated by the com-
ponent C1 of server 3 is sent to the process delegator 200. In

US 9,059,992 B2

5

one embodiment, the component C1 directly sends the output
O1 to the component C2 for executing the next task, i.e.,
D1T2. In one embodiment, the process delegator 200 selects
the component C2 having least workload (e.g., component C2
onserver 2 has no workload) for executing the task D1T2. The
task D1T2 is executed by the component C2 of server 2 to
generate the output O2. The component C2 sends the output
02 to the process delegator 200 or directly to the component
C3 for executing D1T3 (last task). In one embodiment, the
process delegator 200 selects the component C3 having least
workload (e.g., C3 of server 3) for executing the task D1T3 to
generate a final output O3. The final output O3 is received by
the process delegator 200. The process delegator 200 either
stores the output O3 within the backend system 140 or sends
the output O3 to the portable device 120.

In one embodiment, the request comprises a mode field
which indicates whether the request is to be processed in an
online mode as an ‘online request’ or in an offline mode as an
‘offline request.” The distributed MEAP 110 accordingly pro-
cesses the request. The online request is the request which is
processed when the portable device 120 is connected to the
distributed MEAP 110, whereas the offline request is the
request which may be stored and processed even if the por-
table device 120 is not being connected to the distributed
MEAP 110. Typically, the process delegator 200 identifies the
context of the request, e.g., the mode field, and then calls the
target synchronously or asynchronously to execute the
request. If the request is online request, the process delegator
200 calls the target synchronously to execute the request. In
case of the offline request, the process delegator 200 calls the
target asynchronously to execute the request. In asynchro-
nous call, the target immediately returns the output to the
process delegator 200 after executing the task.

In one embodiment, the distributed MEAP 110 pushes data
or information into the portable device 120 without receiving
request from the portable device 120. Typically, the distrib-
uted MEAP 110 applies ‘push mechanism’ to automatically
update data or software of the portable device 120.

In one embodiment, the components, e.g., C1-C3, and the
process delegator 200 are written in a dynamic language such
as ‘Erlang®.’ Using a dynamic language, a latest version of
code or updated component can be loaded while running an
old version. Therefore, software up gradation can be easily
performed while running an old version and without shutting
down the operation. Once the software or the components are
updated, from next execution cycle, the new or the latest
version of code or updated component is used for execution.

FIG. 6 is a flowchart illustrating a method for executing the
request by the distributed MEAP 110, according to an
embodiment. The request is received by the distributed
MEAP 110 at step 601. The request may be received from any
portable device 120. Based upon the request, the process
delegator 200, communicatively coupled to the distributed
MEAP 110, determines the one or more components capable
of executing the request at step 602. The one or more com-
ponents are determined from the one or more servers regis-
tered with the distributed MEAP 110. The process delegator
200 selects the component, from the one or more compo-
nents, for executing the request at step 603. In one embodi-
ment, the component is selected based upon the workload of
the component. One of the methods for selecting the compo-
nent is described in FIG. 7. The request is sent to the selected
component for execution at step 604. The selected component
executes the request and generates the output. The generated
output is received from the selected component at step 605. In
one embodiment, the output may comprise the confirmation
message or data. In one embodiment, the output is sent to the

10

15

20

25

30

35

40

45

50

55

60

65

6

portable device 120. In another embodiment, the output is
stored in the backend system 140.

FIG. 7 is a flowchart illustrating a method for selecting the
component for executing the request, according to an
embodiment. Once the request is received by the distributed
MEAP 110, the distributed MEAP 110 determines the one or
more components capable of executing the request. At step
701, the distributed MEAP 110 determines the number of
requests to be executed on each of the one or more compo-
nents capable of executing the request. At step 702, it is
determined if there are a plurality of components having the
least number of requests to be executed. In case there are the
plurality of components having the least number of requests
to be executed (step 702: YES), the distributed MEAP 110
randomly selects one of the plurality of components for
executing the request at step 703. In case a single component
has least number of request (step 702: NO), the distributed
MEAP 110 selects the component having the least number of
request at step 704. The request is sent to the selected com-
ponent for execution.

Embodiments described above provide a distributed
MEARP. The distributed MEAP selects any available compo-
nents from remotely located servers, apart from its own com-
ponents, for executing the requests. The component is
selected based upon a workload or availability of the compo-
nent. Therefore, the requests can be executed very efficiently
and in less time. Also, the distributed MEAP can easily scale
out by registering new servers for executing requests. Further,
new components can be easily created on the new servers, on
demand and when required by the distributed MEAP. The
process of replicating or creating components on various
servers helps the distributed MEAP to scale-out and effi-
ciently execute the request. The distributed MEAP enables
execution of several requests in parallel on various servers.
The distributed MEAP can also easily scale-up by using
computing resources (e.g., hardware resources) from
remotely located servers.

Moreover, a developer can configure whether the request is
to be executed in an online mode or an offline mode, as per
requirement. In one embodiment, an end user can specify the
mode of executing the request as per their choice. Therefore,
the distributed MEAP supports both the online and the offline
mode of executing the request. Further, the distributed MEAP
allows upgrading software and hardware without shutting
down the operation. The code for the components, including
the process delegator, is written in dynamic language such as
‘Erlang®.” Therefore, a latest version of code can be easily
loaded while running an old version and without shutting
down the operation. Once the code is updated, from next
execution, the new or the latest version of code is used for
execution. Therefore, there is no wastage of operational or
productive time.

Some embodiments may include the above-described
methods being written as one or more software components.
These components, and the functionality associated with
each, may be used by client, server, distributed, or peer com-
puter systems. These components may be written in a com-
puter language corresponding to one or more programming
languages such as, functional, declarative, procedural,
object-oriented, lower level languages and the like. They may
be linked to other components via various application pro-
gramming interfaces and then compiled into one complete
application for a server or a client. Alternatively, the compo-
nents may be implemented in server and client applications.
Further, these components may be linked together via various
distributed programming protocols. Some example embodi-
ments may include remote procedure calls being used to

US 9,059,992 B2

7

implement one or more of these components across a distrib-
uted programming environment. For example, a logic level
may reside on a first computer system that is remotely located
from a second computer system containing an interface level
(e.g., a graphical user interface). These first and second com-
puter systems can be configured in a server-client, peer-to-
peer, or some other configuration. The clients can vary in
complexity from mobile and handheld devices, to thin clients
and on to thick clients or even other servers.

The above-illustrated software components are tangibly
stored on a computer readable storage medium as instruc-
tions. The term “computer readable storage medium” should
be taken to include a single medium or multiple media that
stores one or more sets of instructions. The term “computer
readable storage medium” should be taken to include any
physical article that is capable of undergoing a set of physical
changes to physically store, encode, or otherwise carry a set
of instructions for execution by a computer system which
causes the computer system to perform any of the methods or
process steps described, represented, or illustrated herein. A
computer readable storage medium may be a non-transitory
computer readable storage medium. Examples of a non-tran-
sitory computer readable storage media include, but are not
limited to: magnetic media, such as hard disks, floppy disks,
and magnetic tape; optical media such as CD-ROMs, DVDs
and holographic indicator devices; magneto-optical media;
and hardware devices that are specially configured to store
and execute, such as application-specific integrated circuits
(“ASICs”), programmable logic devices (“PLDs”) and ROM
and RAM devices. Examples of computer readable instruc-
tions include machine code, such as produced by a compiler,
and files containing higher-level code that are executed by a
computer using an interpreter. For example, an embodiment
may be implemented using Java, C++, or other object-ori-
ented programming language and development tools.
Another embodiment may be implemented in hard-wired
circuitry in place of, or in combination with machine readable
software instructions.

FIG. 8is ablock diagram of an exemplary computer system
800. The computer system 800 includes a processor 805 that
executes software instructions or code stored on a computer
readable storage medium 855 to perform the above-illus-
trated methods. The processor 805 can include a plurality of
cores. The computer system 800 includes a media reader 840
to read the instructions from the computer readable storage
medium 855 and store the instructions in storage 810 or in
random access memory (RAM) 815. The storage 810 pro-
vides a large space for keeping static data where at least some
instructions could be stored for later execution. According to
some embodiments, such as some in-memory computing sys-
tem embodiments, the RAM 815 can have sufficient storage
capacity to store much of the data required for processing in
the RAM 815 instead of in the storage 810. In some embodi-
ments, all of the data required for processing may be stored in
the RAM 815. The stored instructions may be further com-
piled to generate other representations of the instructions and
dynamically stored in the RAM 815. The processor 805 reads
instructions from the RAM 815 and performs actions as
instructed. According to one embodiment, the computer sys-
tem 800 further includes an output device 825 (e.g., a display)
to provide at least some of the results of the execution as
output including, but not limited to, visual information to
users and an input device 830 to provide a user or another
device with means for entering data and/or otherwise interact
with the computer system 800. Each of these output devices
825 and input devices 830 could be joined by one or more
additional peripherals to further expand the capabilities of the

10

15

20

25

30

35

40

45

50

55

60

65

8

computer system 800. A network communicator 835 may be
provided to connect the computer system 800 to a network
850 and in turn to other devices connected to the network 850
including other clients, servers, data stores, and interfaces, for
instance. The modules of the computer system 800 are inter-
connected via a bus 845. Computer system 800 includes a
data source interface 820 to access data source 860. The data
source 860 can be accessed via one or more abstraction layers
implemented in hardware or software. For example, the data
source 860 may be accessed by network 850. In some
embodiments the data source 860 may be accessed via an
abstraction layer, such as, a semantic layer.

A data source is an information resource. Data sources
include sources of data that enable data storage and retrieval.
Data sources may include databases, such as, relational,
transactional, hierarchical, multi-dimensional (e.g., OLAP),
object oriented databases, and the like. Further data sources
include tabular data (e.g., spreadsheets, delimited text files),
data tagged with a markup language (e.g., XML data), trans-
actional data, unstructured data (e.g., text files, screen scrap-
ings), hierarchical data (e.g., data in a file system, XML data),
files, a plurality of reports, and any other data source acces-
sible through an established protocol, such as, Open Database
Connectivity (ODBC), produced by an underlying software
system, e.g., an ERP system, and the like. Data sources may
also include a data source where the data is not tangibly stored
or otherwise ephemeral such as data streams, broadcast data,
and the like. These data sources can include associated data
foundations, semantic layers, management systems, security
systems and so on.

In the above description, numerous specific details are set
forth to provide a thorough understanding of embodiments.
One skilled in the relevant art will recognize, however that the
one or more embodiments can be practiced without one or
more of the specific details or with other methods, compo-
nents, techniques, etc. In other instances, well-known opera-
tions or structures are not shown or described in details.

Although the processes illustrated and described herein
include series of steps, it will be appreciated that the different
embodiments are not limited by the illustrated ordering of
steps, as some steps may occur in different orders, some
concurrently with other steps apart from that shown and
described herein. In addition, not all illustrated steps may be
required to implement a methodology in accordance with the
one or more embodiments. Moreover, it will be appreciated
that the processes may be implemented in association with
the apparatus and systems illustrated and described herein as
well as in association with other systems not illustrated.

The above descriptions and illustrations of embodiments,
including what is described in the Abstract, is not intended to
be exhaustive orto limit the embodiments to the precise forms
disclosed. While specific embodiments of, and examples for,
the embodiment are described herein for illustrative pur-
poses, various equivalent modifications are possible within
the scope of the embodiments, as those skilled in the relevant
art will recognize. These modifications can be made to the
embodiments in light of the above detailed description.
Rather, the scope of the one or more embodiments is to be
determined by the following claims, which are to be inter-
preted in accordance with established doctrines of claim con-
struction.

What is claimed is:

1. An article of manufacture including a non-transitory
computer readable storage medium to tangibly store instruc-
tions, which when executed by a computer, cause the com-
puter to perform operations comprising:

from a mobile device, receiving a request to be executed;

US 9,059,992 B2

9

determining a context of the request by identifying one or

more fields included within the request;

based upon the context of the request, determining whether

one or more middleware components are capable of
executing the request, wherein the one or more middle-
ware components are determined from one or more
remotely located servers;

when the one or more middleware components are capable

of executing the request, selecting a middleware com-
ponent from the one or more middleware components
for executing the request;

when the one or more middleware components are not

capable of executing the request, creating a middleware

component on one of the one or more remotely located

servers by triggering an execution of a predefined code

of'the middleware component, for executing the request;

sending the request to one of:

the selected middleware component for execution, when
the one or more middleware components are capable
of executing the request; and

the created middleware component for execution, when
the middleware components is created; and

based upon the execution, receiving an output from the one

of:

the selected middleware component, when the selected
middleware component executed the request; and

the created middleware component, when the created
middleware component executed the request.

2. The article of manufacture of claim 1, wherein instruc-
tions to select the middleware component for executing the
request further comprises:

determine a number of requests to be executed on the one

or more middleware components; and

select the middleware component having a least number of

requests to be executed.

3. The article of manufacture of claim 2 further comprising
instructions which when executed cause the computer to:

when there are a plurality of middleware components hav-

ing the least number of requests to be executed, select a
middleware component from the plurality of middle-
ware components at random.

4. The article of manufacture of claim 1, wherein the output
comprises at least one of data and a confirmation message.

5. The article of manufacture of claim 1 further comprising
instructions which when executed cause the computer to for-
ward the output to at least one of:

the mobile device from which the request is received; and

another middleware component on the one or more

remotely located servers.

6. The article of manufacture of claim 1, wherein the one or
more remotely located servers are registered by a user.

7. The article of manufacture of claim 1 further comprising
instructions which when executed cause the computer to:

determine whether the request is to be executed as an

online request or an offline request;

when the request is to be executed as the online request,

execute the request synchronously; and

when the request is to be executed as the offline request,

execute the request asynchronously.

8. The article of manufacture of claim 1, wherein instruc-
tions to determine the one or more middleware components
capable of executing the request further comprises:

identify a user sending the request;

determine the one or more remotely located servers regis-

tered for the identified user; and

5

10

15

20

25

30

40

45

50

55

60

10

from the determined one or more registered remotely
located servers, determine the one or more middleware
components capable of executing the request.

9. A computer-implemented method for distributed mobile
enterprise application platform (MEAP), the method com-
prising:

from a mobile device, receiving a request to be executed;

determining a context of the request by identifying one or

more fields included within the request;

based upon the context of the request, determining whether

one or more middleware components are capable of
executing the request, wherein the one or more middle-
ware components are determined from one or more
remotely located servers;

when the one or more middleware components are capable

of executing the request, selecting a middleware com-
ponent from the one or more middleware components
for executing the request;

when the one or more middleware components are not

capable of executing the request, creating a middleware

component on one of the one or more remotely located

servers by triggering an execution of a predefined code

of the middleware component, for executing the request;

sending the request to one of:

the selected middleware component for execution, when
the one or more middleware components are capable
of executing the request; and

the created middleware component for execution, when
the middleware components is created; and

based upon the execution, receiving an output from the one

of:

the selected middleware component, when the selected
middleware component executed the request; and

the created middleware component, when the created
middleware component executed the request.

10. The method of claim 9, wherein selecting the middle-
ware component further comprises:

determining a number of requests to be executed on the one

or more middleware components; and

selecting the middleware component having a least number

of requests to be executed.

11. The method of claim 10 further comprising:

determining whether there are a plurality of middleware

components having the least number of requests to be
executed; and

when there are the plurality of middleware components

having the least number of requests to be executed,
selecting the middleware component from the plurality
of middleware components at random.

12. The method of claim 9 further comprises forwarding
the output to at least one of:

the mobile device from which the request is received; and

another middleware component on the one or more

remotely located servers.

13. The method of claim 9 further comprises:

determining whether the request is to be executed as an

online request or an offline request;

when the request is to be executed as the online request,

executing the request synchronously; and

when the request is to be executed as the offline request,

executing the request asynchronously.

14. A system for distributed mobile enterprise application
platform (MEAP), the system comprising:

one or more middleware components included in one or

more remotely located servers and capable of executing
a request from a mobile device; and
a process delegator within the MEAP configured to:

US 9,059,992 B2

11

receive the request to be executed from the mobile
device;
determine a context of the request by identifying one or
more fields included within the request;
based upon the context of the request, determine
whether the one or more middleware components are
available for of executing the request;
when the one or more middleware components are avail -
able for executing the request, select a middleware
component for executing the request;
when the one or more middleware components are not
capable of executing the request, create a middleware
component on one of the one or more remotely
located servers by triggering an execution of a pre-
defined code of the middleware component, for
executing the request;
send the request to one of:
the selected middleware component for execution,
when the one or more middleware components are
capable of executing the request; and
the created middleware component for execution,
when the middleware components is created; and
based upon the execution, receive an output from the one
of:
the selected middleware component, when the
selected middleware component executed the
request; and

10

25

12

the created middleware component, when the created
middleware component executed the request.

15. The system of claim 14, wherein the process delegator
is further configured to select the middleware component by:
determining a number of requests to be executed on the one

or more middleware components; and

selecting the middleware component having a least number

of requests to be executed.

16. The system of claim 15, wherein the process delegator
is further configured to:
determine whether there are a plurality of middleware

components having the least number of requests to be
executed; and

when there are the plurality of middleware components

having the least number of request to be executed, select
the middleware component from the plurality of middle-
ware components at random.

17. The system of claim 14, wherein the process delegator
is configured to determine the one or more middleware com-
ponents capable of executing the request by:

identifying a user sending the request;

determining the one or more remotely located servers reg-

istered for the identified user; and

from the determined one or more registered remotely

located servers, determining the one or more middle-
ware components capable of executing the request.

#* #* #* #* #*

